
S o c i a l O r g a n i z a t i o n S t a n d a r d
T/GBA 015—2024

Technical requirements for enterprise-

level low-code development platform

企业级低代码开发平台技术要求

(English Translation)

12

Issued by Guangdong-Hong Kong-Macao Greater

Bay Area Standards Innovation Alliance

Issue date：2024-02-20 Implementation date：2024-03-20

ICS 35.240.01

CCS M30 49

T/GBA 015—2024

I

Content

Foreword .. Ⅱ

1 Scope .. 1

2 Normative Reference Documents .. 1

3 Terms and Definitions .. 1

4 Abbreviations .. 3

5 System Architecture .. 3

6 Domain Specified Language（DSL） ... 4

7 Core Capabilities .. 4

8 Integrated Development ... 6

9 Running Mode ... 7

10 Operations and Maintenance Services ... 8

Bibliography .. 12

T/GBA 015—2024

II

Foreword

This stabdard is drafted in accordance with the rules set forth in GB/T 1.1-2020 Directives
for Standardization -- Part 1: Rules for the Structure and Drafting of Standardizing Documents.

This standard is proposed by Tencent Cloud Computing (Beijing) Co., Ltd.

This standard is prepared by the Industrial Internet Committee of the Guangdong-Hong Kong-Macao

Greater Bay Area Standards Innovation Alliance.

This standard is authorized for use by organizational partners and all members of the

Guangdong-Hong Kong-Macao Greater Bay Area Standards Innovation Alliance. These members are

required to adopt the same transformation into their own group standards and publicize the

standard basic information on the National Group Standards Information Platform.

Please note that some of the contents of this document may involve patent rights. The issuing

body of this document shall not be held responsible for identifying any or all such patent

rights.

This is the first release.

T/GBA 015—2024

1

Enterprise-level Low-Code Development Platform

Technical Requirements

1 Scope

This document specifies the system architecture and general technical requirements of the

enterprise-level low-code development platform, including the domain-specific language (DSL)

layer, the core capability layer, the integrated development, the running mode, and the

operation and maintenance service layer, etc.

This document is applicable to the design, development and implementation of the

enterprise-level low-code development platform.

2 Normative Reference Documents

This document does not have normative reference documents.

3 Terms and Definitions

The following terms and definitions apply to this document.

3.1 Enterprise-level Low-code Development Platform

A platform that provides the capability of developing services/products with reduced or no

coding for the digitalization of organizational business.

3.2 Domain Specified Language

A computer programming language with limited expressiveness for a specific domain, which

provides the domain development language for the low-code platform.
Note: DSL has the following three characteristics:

a）Language nature: DSL is a programming language, so it must have coherent expressive power, whether it

is an expression or a combination of expressions;

b）Limited expressiveness: General-purpose programming languages provide a wide range of capabilities: support

for various data, control, and abstract structures. These capabilities are useful, but they also make

the language difficult to learn and use. DSL only supports the minimum set of features required by a

specific domain. Using DSL, it is impossible to build a complete system, but it can solve some aspects

of the system problem;

c）Domain focus: Only in a clear and small domain, this limited-capability language will be useful.

3.3 Logic Visualization

A way or tool to express logic code as logic nodes and lines through a graphical visualization

interface, and to arrange code logic, business process and data processing logic, etc.

3.4 UI Visualization

T/GBA 015—2024

2

A way to complete the editing and development of pages, layouts, components, containers,

plugins, events and templates in UI through interactions including but not limited to component

dragging, form filling, etc.
Note 1: Components are the smallest granularity of page layout, and containers can nest components and

containers.

Note 2: Events are the basic units of page and component interaction logic.

Note 3: Templates are html pages based on different business logic and technology stacks, which are the carrier

units of components and containers.

Note 4: Plugins refer to components without UI.

3.5 Component

The minimum unit required for UI visualization and logical visualization orchestration is

collectively referred to as a component, and by orchestrating the components, a complete

business logic can be built.
Note: Common types of components include UI components, event components, logic components, template

components, etc. Usually, components can be customized and extended by business parties.

3.6 Data Schema

A metadata abstraction collection that describes the data model.
Note: Relevant connection parameters for backend database connection (host, port, etc.).

3.7 Data Model

A model that uses the database and metadata configuration information to automatically generate

common data operation interfaces and record these configurations with data schema.

3.8 Write Once Run Multiterminal

A way to generate applications that run on multiple scenarios/platforms with consistent

presentation content and interaction logic through a low-code design and development data

(including logic, pages, etc.).

3.9 Parsing Engine

An engine that takes the data of the UI schema and the logic schema of the interface

visualization as input, and parses the running program framework through runtime.

3.10 Compiling Engine

Translate a program framework into a specified high-level language by applying certain rules

to the processing of UI schema and Logic schema.

3.11 Grayscale Publishing

A publishing method that supports smooth transition, supports selecting a part of users

according to a certain strategy, and lets them experience the new version of the product

function first, and then decides to continue to enlarge the new version of the delivery scope

until full upgrade or rollback to the old version by collecting the feedback of these users

on the new version function and monitoring the service running status, and analyzing on the

new version function, performance, stability and other indicators.

3.12 Hot Fix

A way to change the original code logic or resource file of the App or SDK without re-downloading

and installing by dynamically issuing and loading code.

T/GBA 015—2024

3

Note: The hot fix of the low-code platform is essentially an update of the schema information. In the dynamic

parsing (parsing execution) mode, developers can use configuration and other methods to configure, manage

and dynamically issue the schema information, and complete the hot fix capability.

3.13 Low-code Development Platform Product

The application configuration and code data produced by the developer through the low-code

development platform, including but not limited to configuration files, data, code, binary

files, etc.

4 Abbreviations

The following abbreviations apply to this document.

AI: Artificial Intelligence

API: Application Programming Interface

APP: Application

CPU: Central Processing Unit

DSL: Domain Specified Language

IP: Internet Protocol

JSON: JavaScript Object Notation

OS: Operating System

PC: Personal Computer

PV: Page View

SaaS: Software as a Service

SDK: Software Development Kit

SLA: Service Level Agreement

TCC: Type Correctness Condition

UI: User Interface

XML: eXtensible Markup Language

YAML: YAML Aint a Markup Language

5 System Architecture

Enterprise-level low code development platform, including domain specific language (DSL), core

capabilities, integrated development, runtime, operation and maintenance services modules,

specifically:

a) Domain specific language module, providing development language capabilities for low code

development platforms;

b) Core competency module, providing a core competency engine for low code development

platforms, including front-end and back-end logical orchestration, front-end page

orchestration and multi end adaptation, back-end data model and data interface

orchestration, and other front-end and back-end capabilities;

c) Integrated development, providing the necessary code editing, visual design, AI development

capabilities for low code development platforms;

d) The running mode defines the main running mode of low code development platforms;

e) Operations and maintenance services, providing various capability requirements related to

low code development platform development products.

The system architecture of the enterprise-level low code development platform is shown in

Figure 1.

T/GBA 015—2024

4

Figure 1 System architecture of the enterprise-level low-code development platform

6 Domain Specified Language（DSL）

Domain specific language (DSL), provides a configuration method for text editing, and meets

the following technical requirements:

a) DSL definition: provides the structure of the configuration file required by DSL, including

format, syntax, parameters, semantics, domain model, etc.;

b) DSL extension: shall provide the ability of dynamic extension of DSL, to cope with the

personalized development needs of business;

c) DSL data: shall provide the configuration data for building and running low-code

applications;

d) DSL editing: refers to the editing method of configuration data, shall support manual

writing, visual editing or AI automatic generation of three ways;

e) DSL validation: shall have the ability to check and prompt the format and rationality of

the DSL produced during DSL editing;

f) DSL execution: shall have the ability to interpret DSL and run it in real time, as well

as compile DSL into native code and run it in two ways.

7 Core Capabilities

7.1 Logic Orchestration

T/GBA 015—2024

5

The low-code development platform shall provide the capability of logic orchestration, which

solves the development capabilities that are not implemented by the built-in components and

functional modules of the platform, including but not limited to the following capabilities:

a) Logic schema: Low code platforms shall be able to generate logic schemas that describe

the execution process of logic through logical orchestration, including conditions, loops,

assignments, calculations, call relationships, etc. The description files can be

mainstream format data files such as JSON, YAML, XML;

b) Multi-platform Runtime: It shall support multiple running environments, and have the

ability to run the same set of applications on different platforms, achieving

cross-platform application development and deployment;

c) General Process Control Nodes: It shall provide the node capability for controlling the

business process, realizing functions such as process control, condition judgment, loop,

etc., and building various business processes;

d) Data Read and Write Nodes: It shall provide the ability to read and write data in the business

process, realizing data persistence and sharing;

e) Custom Process Nodes: It shall provide the nodes to extend the business process, customize

the business process, and realize personalized business needs;

f) Code Nodes: It shall provide the ability to write custom code nodes, realize specific

business logic, and extend the functionality and flexibility of the low-code platform.

7.2 Front-end

The low-code development platform shall provide the low-code development capability of the

user interface, including but not limited to the following requirements:

a) UI Schema:UI schema shall be provided to describe the user interface, describing the

metadata collection of the user interface through containers, layouts, components, styles,

events, routing, and other content, including but not limited to page layout, styles, sizes,

colors, responsiveness to user behavior, and ability to interact with back-end data;

b) Multi-terminal adaptation: It shall have the ability of multi-terminal adaptation,

including but not limited to Web, mini-program, android, iOS, windows, mac OS and other

terminal types;

c) Pre-built component library: It shall provide the basic components and atomic components

required by the business domain, and can extend customized components or capabilities based

on the basic capabilities provided by the generator, with flexibility;

d) Data source binding: It shall support the function of binding the data source required

in the low-code development process, including but not limited to binding local variables,

global variables to the specified database table, interface return or other custom data

source capabilities;

e) Event mechanism: It shall have the implementation of event response, including but not

limited to event triggers, life cycle event management, and response events of storage,

network, UI behaviors;

f) Third-party page integration: It shall have the ability of integrating third-party pages,

including but not limited to using page jump, micro-front-end technology;

g) Custom components/events shall meet the following capability requirements:

1) It support the custom component capability, custom components shall be designed and

developed according to the agreed specifications, and access the low-code development

platform, for listing and use;

T/GBA 015—2024

6

2) It support the custom event capability, custom events allow components to customize

event triggers and event responses, and achieve the effect of component linkage by

orchestrating custom event triggers and event responses between different components.

7.3 Back-end

The low-code development platform shall provide the model-driven back-end capability,

including but not limited to the following requirements:

a) Model:

The model of a low code development platform shall meet the following requirements:

1) Model structure: A specification is provided to define the data model structure, which

is used to describe data types, relationships, validation rules, and other data model

specifications, including but not limited to JSON, YAML, and XML;

2) Data model: A data model that uses the corresponding model structure is designed for

the business system;

b) Domain and model services: Provide a set of services related to the business domain, through

which data in the domain can be created, modified and queried;

c) Model methods: Provide a set of operations for model interaction, including create, read,

update, delete (CRUD) operations, and have scalability, allowing custom logic;

d) Data and application integration: It shall support the integration of existing data and

applications, to achieve the modernization of traditional application systems, connect

enterprise data, avoid data islands and chimney applications;

e) Model data source: Define how the data model connects to its data source. Including

relational databases, NoSQL databases, file systems or cloud services. It shall provide

a configuration method that makes it easy to switch or integrate multiple data sources;

f) The data interface shall meet the following requirements:

1) Authentication: It ensures that the data interaction process must go through a secure

authentication step, to verify and authorize data access;

2) General data interface: The front-end application requests data through a unified way;

3) On-demand read and write: Support flexible data access, allowing to read or update

specific parts of data as needed;

4) Custom interface: Allow developers to create application-specific interfaces, to

support complex or non-standard data interaction requirements;

g) Heterogeneous multi-source storage shall have the ability to access storage resources,

including but not limited to:

1) Storage resources shall include but are not limited to relational databases, in memory

databases, object storage, file storage, etc., as well as access capabilities to

storage resources and middleware such as Redis and big data platforms;

2) It shall support relational databases, for processing data with fixed schema;

3) It should support semi-structured data storage, such as JSON or XML documents,

allowing flexible data models and fast data access;

4) It should support cache databases, providing fast data read and write, usually used

to improve application performance;

5) It shall be able to integrate and manage data from third-party APIs, to extend the

system’s functionality and access external data.

8 Integrated Development

T/GBA 015—2024

7

8.1 AI automatic orchestration capability

Low code development platforms can provide AI based intelligent programming capabilities,

including the ability to automatically generate code in areas such as intelligent generation,

design draft conversion, and intelligent building assistance,specifically:

a) Intelligent generation: Based on AI, convert users' natural language descriptions into

product pages, product logic, data models, business processes, etc.;

b) Intelligent Building: Based on AI, providing intelligent assistance, automatically

recommending relevant industry attributes, scene components, logical nodes, interfaces,

etc., improving low code programming efficiency and low code development quality;

c) Design draft conversion page: Support developers to automatically generate pages by

uploading design drafts, parse components in the design drafts, automatically convert them

to components in low code platforms, and assemble them into pages.

8.2 Template/rule library

Templates and rule libraries shall be provided to improve the reuse rate of

components/functions and accelerate the application construction process.

8.3 Visual design

Visual designers shall be provided to implement functions including but not limited to data

model modeling, user interface construction, and logical visualization orchestration.

8.4 Code editor

Source code management capabilities shall be provided, including but not limited to:

a) The source code export capability, and the editor shall have the ability to export the

source code file to the local;

b） The source code editing capability, including source code insertion, online editing, etc.

8.5 Native development

Native development management and operational capabilities shall be provided, including but

not limited to:

a) It support developers to develop applications through the traditional development mode,

and integrate them into the products of the low-code platform;

b) Provide the ability to call Open API interfaces and register callbacks, and according to

the business form and business process, integrate the visual capabilities into the business

flow link, and retain the original logic of the business system to the greatest extent.

8.6 Configuration version management

The ability to manage configuration shall be provided, including but not limited to:

a) The ability to manage versions, maintain information for each version, and allow developers

to perform version rollback operations and view information for each version;

b) The ability to handle conflicts, in the process of collaborative development with multiple

people, shall have the ability to handle version conflicts;

c) Access third-party configuration version management tools.

9 Running Mode

The running mode of the low-code development platform includes two types:

T/GBA 015—2024

8

a) Parsing execution: Follow the low-code component description protocol, application

description protocol, low-code application development framework protocol and logic

protocol, etc., read the corresponding Schema generated by the UI visualization tool and

logic visualization tool, and complete the front-end display and back-end service parsing

and running;

b) Enerate code compilation execution: According to the metadata and data interface

information contained in the Schema, provide the ability to translate multiple Schema in

the platform into high-level languages, and have at least one programming language

capability, including but not limited to Java, Nodejs, Golang programming languages.

10 Operations and Maintenance Services

10.1 Continuous Integration

It shall have the ability for continuous integration, including but not limited to:

a) The operating platform provides an advanced language runtime environment and microservices

governance framework, supporting heterogeneous language execution;

b) It shall offer load protection features for the entire system, such as entrance traffic

control, protection of single computing unit hardware resources (CPU/memory/disk/network

card/queues, etc.), and circuit breaker protection for critical paths;

c) It support the real-time or offline reconciliation capability for key system metrics;

d) It support dynamic business scaling, online rollback, and feature degradation.

10.2 Debugging and Testing

It shall have the ability to debug and test during the development process, including but not

limited to:
a) Support unit testing, interface testing, stress testing, and security testing,, with the

ability to integrate chaos engineering and other capabilities;

b) Support observation and color tracking in grayscale releases, link tracking, and system

topology display capabilities.

10.3 Grayscale Release

It shall have the ability for grayscale releases, including but not limited to:

a) Support the selection of specific user groups for new version features in a controllable

proportion, with the remaining users using the old version features;

b) For mobile H5 pages and PC page access, support determining the access of front-end

resources for new and old versions based on user unique identifiers or source IP;

c) For mini-programs, PC clients, Mac clients, iOS clients, and Android clients, support

pushing new version updates based on user unique identifiers;

d) For back-end service access, support determining the access of back-end services for new

and old versions based on user unique identifiers or source IP;

e) For back-end microservices, support end-to-end grayscale releases.

10.4 Deployment

It shall have the deployment capability for developing applications, supporting the following

related functions:

a) The ability for visual automation and one-click deployment of front-end UI resources and

back-end service resources;

T/GBA 015—2024

9

b) Have the capability to support the private deployment of exported products;

c) The ability for distributed consistency can be achieved through methods such as distributed

transactions and TCC ultimate consistency assurance;

d) Multi-dimensional daily query systems, such as user dimension/request dimension wait;

e) Should provide automated deployment capabilities;

f) Should support deployment parameter settings;

g) Should support containerized deployment of front-end UI resources;

h) Should support containerized deployment of back-end microservices, with support for

parallel scalable deployment;

i) Can support serverless deployment of logically edited back-end atomic logic nodes, with

support for horizontal scalable deployment;

j) Can support viewing deployment details, visualizing deployment progress, and displaying

deployment logs;

k) Can estimate system capacity and proactively adjust deployments in response to business

capacity fluctuations.

10.5 Hot Updates

It shall have the requirements for hot update (release) capabilities, including but not limited

to:

a) Back-end hot update capability: The ability to smoothly update back-end business logic

while ensuring normal service of interfaces;

b) The front-end hot update capability shall meet the following requirements:

1） H5 page interface, style, and component functionality can be automatically updated

during normal application runtime;

2） For mini-programs, partial logic, UI, and style hot update capabilities;

3） For Android applications, hot update capabilities for UI, style, and logic;

4） For iOS clients, limited hot update capabilities according to iOS system requirements.

10.6 Application Monitoring

Low-code development platforms shall have the capability requirements for application

monitoring, including but not limited to:

a) Monitor computing resources and related hardware and software resources, such as

CPU/memory/network card/hard disk/network, and corresponding cloud devices;

b) Monitor based on system-reported data, using threshold configuration or intelligent

detection based on curves;

c) Logic verification for critical services such as storage or qualification;

d) Exception detection and reconciliation for critical system metrics such as traffic and

output;

e) Integration with user feedback and other monitoring systems to promptly identify various

risks;

f) When alarms occur, provide information on the cause of the exception, scope of impact,

relevant personnel, and handling measures;

g) Support toolchain to locate problems, locate problems through data analysis tools, and

verify through the log system;

h) Support multi-dimensional monitoring, including but not limited to business resource

dimension, system dimension, business dimension, security dimension, user feedback

dimension monitoring, etc.

T/GBA 015—2024

10

10.7 Security

10.7.1 Authentication Capability

Products developed on low-code platforms shall possess the ability to allocate and manage

account permissions, including but not limited to:

a) Account System: The low-code platform shall have the capability to manage the account system,

including account system types and account system permissions;

b) User Groups: A user group shall consist of multiple accounts, and the system can maintain

multiple user groups simultaneously;
Note: Users refer to the end-users targeted by the low-code development product.

c) Authentication:

When users access the low-code product, it shall have the following authentication

capabilities:

1） Authentication Granularity: The system grants permissions to "user/user group" at the

granularity of "resource" + "parameter";

2） Authentication Method: Provide authentication interfaces, allowing users to choose

whether to enable system authentication when using resources on the low-code platform.

10.7.2 Audit Capability

It shall have the capability for recording and auditing user operations:

a) The ability of recording and storing user operations on metadata, business data, platform

data, etc.;

b) Audit precision shall support tenant-level, application-level, object-level, field-level,

etc.

10.8 SLA

10.8.1 Platform SLA

The low-code development platform shall provide the SLA of the platform itself to meet the

fllowing indicators:

a) Service level indicators include but are not limited to the following indicators:

1） Availability of low-code development platform pages, including the usability of the

entire development platform's preview area, editor, form configuration area, material

area, menu area, etc., and the correctness and completeness of the displayed content;

2） Availability of related service interfaces of the low-code development platform,

including the service availability of all interfaces related to data storage, data

processing, engine conversion, etc., across the entire development platform;

b) Service level objectives include but are not limited to the following indicators:

1） Requirements for page access availability;
Note: Calculation method: (Total duration in a certain period - duration when the page is not

accessible)/Total duration in a certain period.

2） Requirements for the availability of platform-related service interfaces.
Note: Calculation method: (Total duration in a certain period - duration of interface abnormality)/Total

duration in a certain period.

10.8.2 Product SLA

The low-code development platform shall provide the SLA of the developed products to meet the

fllowing indicators:

a) Service Level Indicators include but are not limited to the following indicators:

1） Logic Compatibility: Compatibility of front-end logic running on various terminals and

hosts (browsers);

T/GBA 015—2024

11

2） UI Adaptability: Consistency of front-end UI interfaces and interactive effects across

various terminals and hosts (browsers), including the display integrity and interaction

consistency on terminals of various sizes;

3） Stability of Interface Access: Service availability of back-end service interface

access;

b) Service Level Objectives include but are not limited to the following indicators:

1） Requirements for logic compatibility;
Note: Calculation method: (Total PV of the product in a certain period - PV due to compatibility

issues)/Total PV of the product in a certain period.

2） Requirements for UI adaptability;
Note: Calculation method: (Total PV of the product in a certain period - PV due to UI adaptability

issues)/Total PV of the product in a certain period.

3） Requirements for the stability of interface access.
Note: Calculation method: (Total number of interface requests for the product in a certain period - number

of abnormal interface requests)/Total number of interface requests for the product in a certain period.

10.9 Application Marketplace

The low-code development platform should support publishing to the application

marketplace,include but are not limited:

a) Provide mature application modules for developers to quickly use;

b) Developers can submit applications to the application marketplace to enrich the variety

of applications available in the market;

c) The application market can support application review function to prevent low-quality

applications from entering the market and affecting user experience;

d) The application market can have unified subscription management, such as application

purchase payment, price scheme setting, application expiration management, and support

for multi tenant SaaS scenarios.

10.10 Internationalization

Low code platform applications should have the ability to configure multiple languages and

time zones.

T/GBA 015—2024

12

Bibliography

[1] GB/T 18978.151—2014 Human-System Interaction Ergonomics Part 151: Internet User Interface

Guidelines

[2] GB/T 24629—2009 XML Schema Markup Rules for Metadata

[3] GB/T 30522— 2014 Science and technology infrastructure ― Metadata standardization

principle and method

[4] GB/T 37729—2019 Information Technology Technical Requirements for Intelligent Mobile

Terminal Application Software (APP)

	Foreword
	1Scope
	2Normative Reference Documents
	3Terms and Definitions
	3.1 Enterprise-level Low-code Development Platform
	3.2 Domain Specified Language
	3.3 Logic Visualization
	3.4 UI Visualization
	3.5 Component
	3.6 Data Schema
	3.7 Data Model
	3.8 Write Once Run Multiterminal
	3.9 Parsing Engine
	3.10 Compiling Engine
	3.11 Grayscale Publishing
	3.12 Hot Fix
	3.13 Low-code Development Platform Product

	4Abbreviations
	5System Architecture
	6Domain Specified Language（DSL）
	7Core Capabilities
	7.1 Logic Orchestration
	7.2 Front-end
	7.3 Back-end

	8Integrated Development
	8.1 AI automatic orchestration capability
	8.2 Template/rule library
	8.3 Visual design
	8.4 Code editor
	8.5 Native development
	8.6 Configuration version management

	9Running Mode
	10Operations and Maintenance Services
	10.1 Continuous Integration
	10.2 Debugging and Testing
	10.3 Grayscale Release
	10.4 Deployment
	10.5 Hot Updates
	10.6 Application Monitoring
	10.7 Security
	10.7.1 Authentication Capability
	10.7.2 Audit Capability

	10.8 SLA
	10.8.1 Platform SLA
	10.8.2 Product SLA

	10.9 Application Marketplace

	Bibliography

